首页 工具
登录
购物车
Z-VAD(OMe)-FMK

Z-VAD(OMe)-FMK

产品编号 T6013   CAS 187389-52-2
别名: Z-VAD-FMK, Z-Val-Ala-Asp(OMe)-FMK

Z-VAD(OMe)-FMK (Z-Val-Ala-Asp(OMe)-FMK) 是一种 caspase 的广谱抑制剂,具有细胞渗透性和不可逆性。Z-VAD(OMe)-FMK 与活化的 caspase 结合,从而抑制细胞凋亡

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
Z-VAD(OMe)-FMK Chemical Structure
Z-VAD(OMe)-FMK, CAS 187389-52-2
规格 价格/CNY 货期 数量
1 mg ¥ 538 现货
5 mg ¥ 1,390 现货
10 mg ¥ 2,230 现货
25 mg ¥ 3,570 现货
50 mg ¥ 4,890 现货
100 mg ¥ 6,790 现货
1 mL * 10 mM (in DMSO) ¥ 1,450 现货
其他形式的 Z-VAD(OMe)-FMK:
产品目录号及名称: Z-VAD(OMe)-FMK (T6013)
点击图片重新获取验证码
选择批次  
纯度: 99.41%
纯度: 98%
纯度: 95.92%
更多批次查询请联系客服
生物活性
化学信息
存储 & 溶解度
参考文献
产品描述 Z-VAD(OMe)-FMK (Z-Val-Ala-Asp(OMe)-FMK) is a broad-spectrum inhibitor of caspases that is cell-permeable and irreversible. Z-VAD(OMe)-FMK binds to activated caspases, thereby inhibiting apoptosis.
体外活性 方法:人白血病细胞 HL60 用 Z-VAD(OMe)-FMK (50 µM) 和 camptothecin (150 μM) 处理 3 h,使用电子显微镜观察细胞形态。
结果:用 camptothecin 处理的细胞表现出典型的凋亡特征包括细胞收缩、染色质浓缩和核碎裂。Z-VAD(OMe)-FMK 联合治疗消除了 camptothecin 诱导的细胞凋亡形态。单独的 Z-VAD(OMe)-FMK 不影响细胞形态。[1]
方法:胆管癌细胞 KKU100、KKU213A 和 KKU213B 用 Z-VAD(OMe)-FMK (20 µM) 预处理 1 h,随后用 CH-CM (0%、50% 和 75%)处理 24 h,使用 Flow Cytometry 方法检测细胞凋亡情况。
结果:Z-VAD(OMe)-FMK 预处理阻止了 CH-MSCs 诱导的细胞凋亡。[2]
方法:人卵巢畸胎瘤细胞 PA-1 用 Z-VAD(OMe)-FMK (50 μM) 和 UVB (100 J/m2) 处理 16 h,使用 Western Blot 方法检测靶点蛋白表达水平。
结果:Z-VAD(OMe)-FMK 消除了 UVB 引起的 PARP切割。[3]
体内活性 方法:为研究 Z-VAD(OMe)-FMK 的体内给药是否能预防感染诱导的早产,将 Z-VAD(OMe)-FMK (10 mg/kg) 单次腹腔注射给用热致死的 B 组链球菌 (HK-GBS) 诱导早产的 CD1 小鼠。
结果:Z-VAD(OMe)-FMK 预处理延迟但不能阻止 HK-GBS 在妊娠小鼠模型中诱导的早产。[4]
方法:为防止 LPS 引起的急性肺损伤,将 Z-VAD(OMe)-FMK (LPS 刺激前 15 分钟,0.25 mg;每小时三次,0.1 mg) 静脉注射给 LPS 诱导凋亡和急性肺损伤的 ICR 小鼠。
结果:Z-VAD(OMe)-FMK 抑制了肺组织中的 caspase-3 活性。Z-VAD(OMe)-FMK 可显著延长小鼠的存活率。细胞凋亡可能在急性肺损伤中发挥重要作用,因此抑制 caspase 活性可能为治疗该疾病提供一种新的治疗方法。[5]
细胞实验 The human monocytic tumour cell line, THP.1 and the leukaemic T-cell line, Jurkat (clone E-6) were maintained in RPMI 1640 supplemented with 10% (v/v) heat-inactivated fetal calf serum, 100 units/ml penicillin and 100 μg/ml streptomycin in an atmosphere of 5% CO2 in air at 37 °C. The cells were maintained in logarithmic growth phase by routine passage every 2–3 days. To induce apoptosis in THP.1 cells, 2×10^6 cells/ml were incubated either alone or in the presence of cycloheximide (25 μM) and TLCK (100 μM) as previously described. In order to assess the possible effects of various ICE-like protease inhibitors, THP.1 cells were also pretreated for 1 h with Z-VAD.FMK (10 μM), Ac-DEVD-CHO (20 μM) and Ac-YVAD-CHO (20 μM) before being exposed to the apoptotic stimulus. To induce apoptosis in Jurkat cells, 2×10^6 cells/ml were stimulated with 200 ng/ml anti-human Fas as described previously [1].
动物实验 Mice used in this study were 5- to 6-week-old (20 to 22 g) ICR males. Mice were injected with 30 mg/kg LPS from E. coli serotype O111:B4 through the tail vein. Z-VAD.fmk was dissolved at 2 mg/ml in 1% dimethyl sulfoxide in sterile saline, and administered to mice by the method of Rodriguez et al. A single intravenous injection of Z-VAD.fmk (0.25 mg) was made 15 minutes before LPS injection, followed by three intravenous injections of Z-VAD.fmk (0.1 mg each) per hour. Control mice were injected with the same volume of 1% DMSO in sterile saline [4].
别名 Z-VAD-FMK, Z-Val-Ala-Asp(OMe)-FMK
化合物与蛋白结合的复合物

T6013_1

Crystal structure of the SARS-CoV-2 main protease in complex with Z-VAD(OMe)-FMK

分子量 467.49
分子式 C22H30FN3O7
CAS No. 187389-52-2

存储

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

H2O: < 1 mg/mL (insoluble or slightly soluble)

Ethanol: < 1 mg/mL (insoluble or slightly soluble)

DMSO: 93 mg/mL (198.93 mM)

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 2.1391 mL 10.6954 mL 21.3908 mL 53.4771 mL
5 mM 0.4278 mL 2.1391 mL 4.2782 mL 10.6954 mL
10 mM 0.2139 mL 1.0695 mL 2.1391 mL 5.3477 mL
20 mM 0.107 mL 0.5348 mL 1.0695 mL 2.6739 mL
50 mM 0.0428 mL 0.2139 mL 0.4278 mL 1.0695 mL
100 mM 0.0214 mL 0.107 mL 0.2139 mL 0.5348 mL

计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

参考文献

1. Shimizu T, et al. Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia. 1997 Aug;11(8):1238-44. 2. Jantalika T, et al. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep. 2022 Jul 5;12(1):11341. 3. Castrogiovanni C, et al. Decrease of mitochondrial p53 during late apoptosis is linked to its dephosphorylation on serine 20. Cancer Biol Ther. 2015;16(9):1296-307. 4. Equils O, et al. Pretreatment with pancaspase inhibitor (Z-VAD-FMK) delays but does not prevent intraperitoneal heat-killed group B Streptococcus-induced preterm delivery in a pregnant mouse model. Infect Dis Obstet Gynecol. 2009;2009:749432. 5. Kawasaki M, et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol. 2000 Aug;157(2):597-603. 6. Lu Z, Zhang G, Zhang Y, et al. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells[J]. Toxicology and applied pharmacology. 2018, 352: 46-58. 7. Shao C S, Zhou X H, Zheng X X, et al. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells[J]. Journal of Ethnopharmacology. 2020, 262: 113213. 8. Wu X, Luo Q, Zhao P, et al. JOSD1 inhibits mitochondrial apoptotic signalling to drive acquired chemoresistance in gynaecological cancer by stabilizing MCL1[J]. Cell Death & Differentiation. 2020, 27(1): 55-70. 9. Zhu Q, Ding L, Zi Z, et al. Viral-Mediated AURKB Cleavage Promotes Cell Segregation and Tumorigenesis[J]. Cell reports. 2019 Mar 26;26(13):3657-3671.e5. 10. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics[J]. ACS nano. 2018 Dec 26;12(12):12380-12392.

文献引用

1. Bi G, Liang J, Shan G, et al.Retinol saturase mediates retinoid metabolism to impair a ferroptosis defense system in cancer cells.Cancer Research.2023: CAN-22-3977. 2. Li Y, Yang W, Zheng Y, et al.Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis.Journal of Experimental & Clinical Cancer Research.2023, 42(1): 1-19. 3. Quan D, Hou R, Shao H, et al.Structure-Based Design of Novel Alkynyl Thio-Benzoxazepinone Receptor-Interacting Protein Kinase-1 Inhibitors: Extending the Chemical Space from the Allosteric to ATP Binding Pockets.Journal of Medicinal Chemistry.2023 4. Zhang X, Han Q, Hou R, et al.Targeting Receptor-Interacting Protein Kinase 1 by Novel Benzothiazole Derivatives: Treatment of Acute Lung Injury through the Necroptosis Pathway.Journal of Medicinal Chemistry.2023 5. Yang W, Sun X, Liu S, et al.TLR8 agonist Motolimod-induced inflammatory death for treatment of acute myeloid leukemia.Biomedicine & Pharmacotherapy.2023, 163: 114759. 6. Cui N, Li S, Zhang Y, et al.Discovery of Sibiriline derivatives as novel receptor-interacting protein kinase 1 inhibitors.European Journal of Medicinal Chemistry.2023: 115190. 7. Urade R, Chang W T, Ko C C, et al.A fluorene derivative inhibits human hepatocellular carcinoma cells by ROS-mediated apoptosis, anoikis and autophagy.Life Sciences.2023: 121835. 8. Xu Y, Liang C, Zhang W, et al.Profiling of the chemical space on the phenyl group of substituted benzothiazole RIPK3 inhibitors.Bioorganic Chemistry.2022: 106339. 9. Tang J, Wu Y, Zhao W, et al.Scaffold hopping derived novel benzoxazepinone RIPK1 inhibitors as anti-necroptosis agents.Bioorganic & Medicinal Chemistry.2023: 117385. 10. Yang D L, Zhang Y, He L, et al. Demethylzeylasteral (T-96) Initiates Extrinsic Apoptosis Against Prostate Cancer cells by Inducing ROS-Mediated ER Stress and Suppressing Autophagic Flux. Biological Research. 2021, 54(1): 1-14.
11. Zhu Q, Ding L, Zi Z, et al. Viral-Mediated AURKB Cleavage Promotes Cell Segregation and Tumorigenesis. Cell Reports. 2019 Mar 26;26(13):3657-3671.e5 12. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS nano. 2018 Dec 26;12(12):12380-12392. 13. Xia Z, Zhang X, Liu P, et al. GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death & Disease. 2021, 12(1): 1-11. 14. Liao X, Fan Y, Hou J, et al. Identification of Chaetocin as a Potent non-ROS-mediated Anticancer Drug Candidate for Gastric Cancer. Journal of Cancer. 2019, 10(16): 3678-3690. 15. Ouyang S, Li H, Lou L, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology. 2022: 102317 16. Wu X, Lu Y, Qin X. Combination of Compound Kushen Injection and cisplatin shows synergistic antitumor activity in p53-R273H/P309S mutant colorectal cancer cells through inducing apoptosis. Journal of Ethnopharmacology. 2021: 114690. 17. Wu Q, Zhang M, Wen Y, et al. Identifying chronic alcoholism drug disulfiram as a potent DJ-1 inhibitor for cancer therapeutics. European Journal of Pharmacology. 2022: 175035 18. Shao C S, Zhou X H, Zheng X X, et al. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells. Journal of Ethnopharmacology. 2020, 262: 113213. 19. Hussain M, Lu Y, Tariq M, et al. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. Iscience. 2022, 25(7): 104591. 20. Wen L, Guo R, You L, et al. Major triterpenoids in Chinese hawthorn “Crataegus pinnatifida” and their effects on cell proliferation and apoptosis induction in MDA-MB-231 cancer cells. Food and chemical toxicology. 2017 Feb;100:149-160. 21. Zhu L, Han Z, He Y, et al. Caspase-1-Dependent Pyroptosis Mediates Adjuvant Activity of Platycodin D as an Adjuvant for Intramuscular Vaccines. Cells. 2022, 11(1): 134. 22. Lu Z, Zhang G, Zhang Y, et al. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicology and applied pharmacology. 2018, 352: 46-58. 23. Zhang P, Zhang J, Quan H, et al. Effects of butein on human osteosarcoma cell proliferation, apoptosis, and autophagy through oxidative stress. Human & Experimental Toxicology. 2022, 41: 09603271221074346. 24. Shan G, Bi G, Zhao G, et al.Inhibition of PKA/CREB1 pathway confers sensitivity to ferroptosis in non-small cell lung cancer.Respiratory Research.2023, 24(1): 1-15. 25. Wang Y, Zhang B, Liu S, et al.The traditional herb Sargentodoxa cuneata alleviates DSS-induced colitis by attenuating epithelial barrier damage via blocking necroptotic signaling.Journal of Ethnopharmacology.2023: 117373. 26. Heber N, Kuhn B J, Strobel T D, et al.The impact of cycling hypoxia on the phenotype of HPV‐positive cervical cancer cells.Journal of Medical Virology.2023, 95(12): e29280. 27. Xin Y F, Dai P, Shao H, et al.Discovery of novel biaryl benzoxazepinones as dual-mode receptor-interacting protein kinase-1 (RIPK1) inhibitors.Bioorganic & Medicinal Chemistry.2024: 117611. 28. Tang Y, Zhuang C.Design, synthesis and anti-necroptosis activity of fused heterocyclic MLKL inhibitors.Bioorganic & Medicinal Chemistry.2024: 117659. 29. Xu L, Wen B, Wu Q, et al.Long non-coding RNA KB-1460A1. 5 promotes ferroptosis by inhibiting mTOR/SREBP-1/SCD1-mediated polyunsaturated fatty acid desaturation in glioma.Carcinogenesis.2024: bgae016. 30. Jiang R, Xu B, Zhi S, et al.Scaffold hopping derived novel benzoxazepinone receptor-interacting protein kinase 1 (RIP1) inhibitors as anti-necroptosis agents: Anti-inflammatory effect in systemic inflammatory response syndrome (SIRS) and epilepsy.European Journal of Medicinal Chemistry.2024: 116304.
收起
CIL62 Curzerenone Marginatoxin Glycoborinine Taurochenodeoxycholic Acid Lasiodin KEA1-97 Panaxynol

相关化合物库

该产品包含在如下化合物库中:
多肽分子库 神经退行性疾病化合物库 已知活性化合物库 抗癌化合物库 共价抑制剂库 NO PAINS 化合物库 蛋白酶抑制剂库 抑制剂库 细胞焦亡化合物库 临床前化合物库

剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

Z-VAD(OMe)-FMK 187389-52-2 Apoptosis Proteases/Proteasome Caspase Inhibitor Z-VAD-FMK ZVAD(OMe)FMK inhibit Z-Val-Ala-Asp(OMe)-FMK Z VAD(OMe) FMK inhibitor

 

陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼