×
{{login.error}}
{{login.verifyresult}}
×
6~16个字符、区分大小写、必须包含字母和数字
6~16个字符、区分大小写、必须包含字母和数字
密码已经重置成功,快去使用新密码吧!
登录账号
密码已经重置成功,快去使用新密码吧! 登录账号
×

注册成功

确认

Sorafenib

产品编号: T0093L 别名:

索拉非尼,Bay 43-9006

SoRafenib是口服活性Raf抑制剂。它诱导细胞自噬凋亡,并具有抗肿瘤活性。它也是铁死亡激动剂。它是多激酶抑制剂,对VEGFR2,VEGFR3,PDGFRβ,FLT3和c-Kit的IC50分别为 90 nM,15 nM,20 nM,57 nM 和 58 nM。
陶术生物的所有产品和服务仅用于科学研究,我们不为任何个人用途提供产品和服务。
Sorafenib Chemical Structure CAS:284461-73-0
Sorafenib is a potent multikinase inhibitor (IC50s: 6/20/22 nM for Raf-1/VEGFR-4/B-Raf).
Besides Raf-1, Sorafenib also inhibits VEGFR-3 (IC50: 20 nM), BRAF wt (IC50: 22 nM), B-RAF V599E (IC50: 38 nM), VEGFR-2 (IC50: 90 nM), PDGFR-β (IC50: 57 nM), c-KIT (IC50: 68 nM), and Flt3 (IC50: 58 nM) in biochemical assays [1]. Sorafenib-induced phosphorylation of c-Met, p70S6K and 4EBP1 is significantly reduced when 10-0505 cells are co-treated with anti-human anti-HGF antibody, suggesting that treatment with Sorafenib leads to increased HGF secretion and activation of c-Met and mTOR targets [2].
Sorafenib Tosylate (10, 30, 50 and 100 mg/kg, p.o.) inhibits the tumor growth of 06-0606 and 10-0505 xenografts in a dose-dependent manner (P<0.01). The growth rate of 06-0606 and 10-0505 xenografts is also significantly reduced by Sorafenib. The weights of 06-0606 tumors in mice that are treated with Sorafenib (50/100 mg/kg) are approximately 13% and 5% of the controls, respectively. 50 mg dose of Sorafenib significantly inhibits tumor growth in mice with lines 5-1318, 26-1004 and 10-0505 (P<0.01). For 50 mg dose, the T/C ratio, where T and C are the median weight (mg) of Sorafenib- and vehicle-treated tumors at the end of the treatment, respectively, for 06-0606, 26-1004, 5-1318, and 10-0505 xenografts is 0.13, 0.10, 0.12 and 0.49, respectively [2]. The survival rate is 73.3 % in Diethylnitrosamine (DENA) group and 83.3 % in the Sorafenib group compared to 100 % in the normal control group. DENA group shows a significant increase in the liver index (1.51-fold increase, p<0.05) compared to normal control group, while treatment with Sorafenib shows a significant decrease (p<0.05) in the liver index when compared to DENA group. The liver index in Sorafenib group significantly decreases to lower than its value in the normal control [3].
Recombinant baculoviruses expressing Raf-1 (residues 305–648) and B-Raf (residues 409–765) are purified as fusion proteins. Full-length human MEK-1 is generated by PCR and purified as a fusion protein from Escherichia coli lysates. Sorafenib tosylate is added to a mixture of Raf-1 (80 ng), or B-Raf (80 ng) with MEK-1 (1 μg) in assay buffer [20 mM Tris (pH 8.2), 100 mM NaCl, 5 mM MgCl2, and 0.15% β-mercaptoethanol] at a final concentration of 1% DMSO. The Raf kinase assay (final volume of 50 μL) is initiated by adding 25 μL of 10 μM γ[33P]ATP (400 Ci/mol) and incubated at 32 °C for 25 minutes. Phosphorylated MEK-1 is harvested by filtration onto a phosphocellulose mat, and 1% phosphoric acid is used to wash away unbound radioactivity. After drying by microwave heating, a β-plate counter is used to quantify filter-bound radioactivity. Human VEGFR2 (KDR) kinase domain is expressed and purified from Sf9 lysates. Time-resolved fluorescence energy transfer assays for VEGFR2 are performed in 96-well opaque plates in the time-resolved fluorescence energy transfer format. Final reaction conditions are as follows: 1 to 10 μM ATP, 25 nM poly GT-biotin, 2 nM Europium-labeled phospho (p)-Tyr antibody (PY20), 10 nM APC, 1 to 7 nM cytoplasmic kinase domain in final concentrations of 1% DMSO, 50 mM HEPES (pH 7.5), 10 mM MgCl2, 0.1 mM EDTA, 0.015% Brij-35, 0.1 mg/mL BSA, and 0.1% β-mercaptoethanol. Reaction volumes are 100 μL and are initiated by the addition of enzyme. Plates are read at both 615 and 665 nM on a Perkin-Elmer VictorV Multilabel counter at ~1.5 to 2.0 hours after reaction initiation. Signal is calculated as a ratio: (665 nm/615 nM) × 10,000 for each well. For IC50 generation, Sorafenib tosylate is added before the enzyme initiation. A 50-fold stock plate is made with Sorafenib tosylate serially diluted 1:3 in a 50% DMSO/50% distilled water solution. Final Sorafenib tosylate concentrations range from 10 μM to 4.56 nM in 1% DMSO.
Tumor cell lines were plated at 2 × 105 cells per well in 12-well tissue culture plates in DMEM growth media (10% heat-inactivated FCS) overnight. Cells were washed once with serum-free media and incubated in DMEM supplemented with 0.1% fatty acid-free BSA containing various concentrations of BAY 43-9006 in 0.1% DMSO for 120 minutes to measure changes in basal pMEK 1/2, pERK 1/2, or pPKB. Cells were washed with cold PBS (PBS containing 0.1 mmol/L vanadate) and lysed in a 1% (v/v) Triton X-100 solution containing protease inhibitors. Lysates were clarified by centrifugation, subjected to SDS-PAGE, transferred to nitrocellulose membranes, blocked in TBS-BSA, and probed with anti-pMEK 1/2 (Ser217/Ser221; 1:1000), anti-MEK 1/2, anti-pERK 1/2 (Thr202/Tyr204; 1:1000), anti-ERK 1/2, anti-pPKB (Ser473; 1:1000), or anti-PKB primary antibodies. Blots were developed with horseradish peroxidase (HRP)-conjugated secondary antibodies and developed with Amersham ECL reagent on Amersham Hyperfilm [1].
Female NCr-nu/nu mice (Taconic Farms, Germantown, NY) were used for all studies. Three to five million cells were injected s.c. into the right flank of each mouse. DLD-1 tumors were established and maintained as a serial in vivo passage of s.c. fragments (3 × 3 mm) implanted in the flank using a 12-gauge trocar. A new generation of the passage was initiated every three weeks, and studies were conducted between generations 3 and 12 of this line. Treatment was initiated when tumors in all mice in each experiment ranged in size from 75 to 144 mg for antitumor efficacy studies and from 100 to 250 mg for studies of microvessel density and ERK phosphorylation. All treatment was administered orally once daily for the duration indicated in each experiment.
284461-73-0
C21H16ClF3N4O3
464.83
索拉非尼;Bay 43-9006;Sorafenib
[1]Xu S, Liu Y, Ding Y, et al. The zinc finger transcription factor, KLF2, protects against COVID-19 associated endothelial dysfunction. Signal Transduction and Targeted Therapy. 2021, 6(1): 1-9.[2]Feng J, Lu P, Zhu G, et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacologica Sinica. 2021 Jan;42(1):160-170. doi: 10.1038/s41401-020-0439-x. Epub 2020 Jun 15.[3]Ma A, Biersack B, Goehringer N, et al. Novel Thienyl-Based Tyrosine Kinase Inhibitors for the Treatment of Hepatocellular Carcinoma. Journal of Personalized Medicine. 2022, 12(5): 738[4]Ni H, Ruan G, Sun C, et al. Tanshinone IIA inhibits gastric cancer cell stemness through inducing ferroptosis. Environmental Toxicology. 2021[5]Bai C, Sun Y, Pan X, et al. Antitumor Effects of Trimethylellagic Acid Isolated From Sanguisorba officinalis L. on Colorectal Cancer via Angiogenesis Inhibition and Apoptosis Induction. Frontiers in Pharmacology. 2020, 10: 1646[6]Zhang H, Xu H, Tang Q, et al. The selective serotonin reuptake inhibitors enhance the cytotoxicity of sorafenib in hepatocellular carcinoma cells. Anti-Cancer Drugs. 2021, 32(8): 793-801.[7]Fang T, Lv H, Lv G, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nature Communications. 2018, 9(1): 1-13[8]Zhou J, Feng J, Wu Y, et al. Simultaneous treatment with sorafenib and glucose restriction inhibits hepatocellular carcinoma in vitro and in vivo by impairing SIAH1-mediated mitophagy. Experimental & Molecular Medicine. 2022: 1-15.[9]Uhrig S, Ellermann J, Walther T, et al. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Research. 2021, 31(3): 448-460[10]Liu Y, Ouyang L, Mao C, et al. PCDHB14 promotes ferroptosis and is a novel tumor suppressor in hepatocellular carcinoma. Oncogene. 2022: 1-14
H2O:<1 mg/mL
DMSO:59 mg/mL (126.9 mM)
Ethanol:<1 mg/mL
Powder: -20°C for 3 years
In solvent: -80°C for 2 years
剂量换算 Sorafenib 284461-73-0
对于各种应用,安全且有效的用药剂量是很有必要的了解更多
体内实验配液计算器
第一步:请输入动物实验的基本信息
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
+
+
+
计算器
摩尔计算器可以帮助您计算
制备已知体积和浓度溶液所需的化合物质量
将已知质量的化合物溶解到所需浓度所需的溶液体积
已知质量的化合物在一定体积内形成的溶液的浓度
稀释计算器可以帮助您计算
制备已知体积和浓度溶液所需的化合物质量
将已知质量的化合物溶解到所需浓度所需的溶液体积
已知质量的化合物在一定体积内形成的溶液的浓度
配液计算器可以帮助您计算
重组计算器可帮助您快速计算试剂的体积,以重组您的小瓶。
/
配液计算器可以帮助您计算
输入化合物的化学式以计算其摩尔质量和元素组成
提示:化学式需区分大小写
g/mol
技术支持

抑制剂处理说明 中可以找到您可能遇到的问题的答案。 主题包括如何准备储备溶液,如何存储产品以及基于细胞的测定和动物实验需要特别注意的问题。

联系我们
400-820-0310
service@tsbiochem.com

上海市静安区江场三路238号8楼