首页 工具
登录
购物车
MG-132

MG-132

产品编号 T2154   CAS 133407-82-6
别名: Z-LLL-al, Z-Leu-Leu-Leu-CHO

MG-132 (Z-Leu-Leu-Leu-al) 是一种 26S 蛋白酶体抑制剂 (IC50=100 nM),具有细胞渗透性、可逆性。MG-132 可作为自噬激活剂,可诱导凋亡

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
MG-132 Chemical Structure
MG-132, CAS 133407-82-6
规格 价格/CNY 折后价 货期 数量
1 mg ¥ 137 ¥ 68 现货
5 mg ¥ 276 ¥ 138 现货
10 mg ¥ 382 ¥ 191 现货
25 mg ¥ 828 ¥ 414 现货
50 mg ¥ 1,280 ¥ 640 现货
100 mg ¥ 1,850 ¥ 925 现货
200 mg ¥ 2,580 ¥ 1,290 现货
500 mg ¥ 4,330 ¥ 2,165 现货
1 mL * 10 mM (in DMSO) ¥ 353 ¥ 176 现货
其他形式的 MG-132:
千万补贴 助力科研
BCA蛋白浓度测定试剂盒限时半价
重组蛋白限时优惠
产品目录号及名称: MG-132 (T2154)
点击图片重新获取验证码
选择批次  
纯度: 99.99%
纯度: 98%
纯度: 97%
纯度: 96.67%
纯度: 95.91%
纯度: 95%
TargetMol batch loading
更多批次查询请联系客服
生物活性
化学信息
存储 & 溶解度
参考文献
产品描述 MG-132 (Z-Leu-Leu-Leu-al) is a 26S proteasome inhibitor (IC50=100 nM) that is cell-permeable and reversible. MG-132 acts as an autophagy activator and also induces apoptosis.
靶点活性 Calpain:1.2 μM (cell free), 20S proteasome:100 nM (cell free)
体外活性 方法:人宫颈癌细胞 HeLa 用 MG-132 (0.5-30 μM) 处理 24 h,使用 MTT 方法检测细胞生长抑制情况。
结果:MG-132 剂量依赖性地抑制 HeLa 细胞生长,IC50 约为 5 μM。[1]
方法:人间皮瘤细胞 NCI-H2452 用 MG-132 (0.25-2 μM) 处理 36 h,使用 Western Blot 方法检测靶点蛋白表达水平。
结果:MG-132 处理诱导 NCI-H2052 细胞中 caspases 3、caspases 7、Bid 和 PARP 的切割,诱导 caspase 依赖性凋亡。[2]
方法:人类黑色素瘤细胞 MeWo 用 MG-132 (0.01-1 μM) 处理 24 h,使用 Flow Cytometry 方法分析细胞周期情况。
结果:MG-132 诱导 MeWo 细胞的细胞周期阻滞在 G2 期。[3]
体内活性 方法:为检测体内抗肿瘤活性,将 MG-132 (1 mg/kg) 静脉注射给携带人宫颈癌肿瘤 HeLa、CaSki 或 C33A 的 C.B‐17/lcr‐scid/scidJcl 小鼠,每周两次,持续四周。
结果:MG-132 治疗显著抑制人宫颈癌肿瘤的生长,表明在体内具有抗肿瘤活性。[4]
方法:为研究 MG-132 长期治疗对心肌肥大的影响及其相关分子机制,将 MG-132 (0.1 mg/kg) 腹腔注射给具有腹主动脉束带(AAB)的大鼠,每天一次,持续八周。
结果:MG-132 治疗显著减弱了 AAB 大鼠的左心室肌细胞面积、左心室重量/体重和肺重量/体重比,降低了左心室舒张直径和壁厚,并增加了缩短分数。MG-132 治疗可显著逆转 AAB 大鼠 ERK1/2 和 JNK1 磷酸化水平的升高。[5]
激酶实验 Inhibitory activities of ZLLa1 and ZLLLal against m-calpain and 20S proteasome were measured by previously described methods.For the m-calpain inhibitory assay,the 0.5 ml reaction mixture contained 0.24% alkali-denatured casein,28 mM 2-mercaptoethanol,0.94 unit of m-calpain,ZLLal or ZLLLal,6 mM CaCl2,and 0.1M Tris-HC1 (pH 7.5).The reaction was started by the addition of m-calpain solution and stopped by the addition of 0.5 ml of 10% trichloroacetic acid after incubation at 30℃ for 15 min.After centrifugation at 1,300×g for 10 min,the absorbance of the supernatant at 280 nm was measured.The reaction mixture for the 20S proteasome inhibitory assay contained 0.1 M Tris-acetate,pH 7.0,20S proteasome,ZLLa1 or ZLLLal,and 25 μM substrate dissolved in dimethyl sulfoxide in a final volume of 1 ml.After incubation at 37℃ for 15 min,the reaction was stopped by the addition of 0.1 ml of 10% SDS and 0.9 ml of 0.1 M Tris-acetate,pH 9.0.The fluorescence of the reaction products was measured.To determine the IC50s against m-calpain and 20S proteasome,various concentrations of the synthetic peptide aldehydes were included in the assay mixture [1].
细胞实验 The effect of MG132 on HeLa cell growth was determined by trypan blue exclusion cell counting or measuring MTT dye absorbance of living cells as previously described. In brief, cells (5x10^5 cells per well) were seeded in 24-well plates for cell counting, and cells (5x10^4 cells per well) were seeded in 96-well microtiter plates for the MTT assay. After exposure to indicated amounts of MG132 for 24 h, cells in 24-well plates or 96-well plates were collected with trypsin digestion for trypan blue exclusion cell counting or were used for the MTT assay. Twenty microliters of MTT solution (2 mg/ml in PBS) was added to each well of 96-well plates. The plates were again incubated for 4 h at 37?C. MTT solution in the medium was aspirated off and 200 μl of DMSO was added to each well to solubilize the formazan crystals formed in viable cells. Optical density was measured at 570 nm using a microplate reader. Each plate contained multiple wells at a given experimental condition and multiple control wells. This procedure was replicated for 2-4 plates per condition [3].
动物实验 Male Sprague–Dawley rats (8 weeks old, 180 – 230 g) were used to establish a pressure-overload model as described previously. All animals were separated into four groups (10 rats per group): (i) vehicle-treated sham group; (ii) MG132-treated sham group; (iii) vehicle-treated abdominal aortic banding (AAB) group; and (iv) MG132-treated AAB group. Under intraperitoneal pentobarbital (50 mg/kg) anesthesia, AAB was created using a 5-0 suture tied twice around the abdominal aorta in which. a 21-gauge needle was inserted. The needle was then retracted yielding a 70 – 80% constriction with an outer aortic diameter of 0.8 mm. In the sham surgery rats, the same surgery was performed as described above except the aorta was constricted. At Day 3 after the surgery, MG132-treated rats were intraperitoneally injected with 0.1 mg/kg/day of MG132 for 8 weeks. All control animals were injected with a corresponding volume of vehicle only (0.1% DMSO) [4]. Sixteen-week-old male CD1 mice were used for all our experiments. Thirty minutes before the immobilization procedure, 0.1 mg/kg of buprenorphine was administrated IP. The mice were then anesthetized using isoflurane. The right hindlimb was immobilized as previously described. Briefly, the hindlimb was immobilized 7 days by stapling the foot exploiting normal dorso-tibial flexion using an Autosuture Royal 35W skin stapler. One tine was inserted close to the toe at the plantar portion of the foot while the other was inserted in the distal portion of the gastrocnemius. The other hindlimb was used as a control. During the immobilization period, the mice were injected subcutaneously with MG132 (7.5 mg/kg/dose) or vehicle (DMSO) twice daily. DMSO containing or not MG132 was diluted in sterile pure corn oil (1:100, injected volume 150 μL). After 7 days, the tibialis anterior (TA) muscles of immobilized and non-i
别名 Z-LLL-al, Z-Leu-Leu-Leu-CHO
化合物与蛋白结合的复合物

T2154_2

Crystal structure of MG-132 covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2.

分子量 475.62
分子式 C26H41N3O5
CAS No. 133407-82-6

存储

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

H2O: Insoluble

Ethanol: 47.5 mg/mL (100 mM)

DMSO: 90 mg/mL (189.23 mM)

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
Ethanol / DMSO 1 mM 2.1025 mL 10.5126 mL 21.0252 mL 52.563 mL
5 mM 0.4205 mL 2.1025 mL 4.205 mL 10.5126 mL
10 mM 0.2103 mL 1.0513 mL 2.1025 mL 5.2563 mL
20 mM 0.1051 mL 0.5256 mL 1.0513 mL 2.6281 mL
50 mM 0.0421 mL 0.2103 mL 0.4205 mL 1.0513 mL
100 mM 0.021 mL 0.1051 mL 0.2103 mL 0.5256 mL

TargetMol Calculator计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

TargetMol Library Books参考文献

1. Han YH, et al. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep. 2009 Jul;22(1):215-21. 2. Yuan BZ, et al. Proteasome Inhibitor MG132 Induces Apoptosis and Inhibits Invasion of Human Malignant Pleural Mesothelioma Cells. Transl Oncol. 2008 Sep;1(3):129-40. 3. Braun HA, et al. Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J Biol Chem. 2005 Aug 5;280(31):28394-401. 4. Matsumoto Y, et al. Enhanced efficacy against cervical carcinomas through polymeric micelles physically incorporating the proteasome inhibitor MG132. Cancer Sci. 2016 Jun;107(6):773-81. 5. Chen B, et al. MG132, a proteasome inhibitor, attenuates pressure-overload-induced cardiac hypertrophy in rats by modulation of mitogen-activated protein kinase signals. Acta Biochim Biophys Sin (Shanghai). 2010 Apr;42(4):253-8. 6. Caron AZ, et al. The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice. BMC Musculoskelet Disord. 2011 Aug 15;12:185. 7. Tsubuki S, et al. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996 Mar;119(3):572-6. 8. Guzmán-Téllez P, Martínez-Valencia D, Silva-Olivares A, et al. Naegleria fowleri and Naegleria gruberi 20S proteasome: identification and characterization[J]. European Journal of Cell Biology. 2020: 151085

TargetMol Library Books文献引用

1. Ding L, Chen X, Zhang W, et al.Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling.The Journal of Clinical Investigation.2023, 133(1). 2. Zhang W, Pan X, Xu Y, et al.Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA.Acta Pharmaceutica Sinica B.2023 3. Liu X, Fang Y, Lv X, et al.Deubiquitinase OTUD6A in macrophages promotes intestinal inflammation and colitis via deubiquitination of NLRP3.Cell Death & Differentiation.2023: 1-15. 4. Yin L, Ye Y, Zou L, et al.AR antagonists develop drug resistance through TOMM20 autophagic degradation-promoted transformation to neuroendocrine prostate cancer.Journal of Experimental & Clinical Cancer Research.2023, 42(1): 1-19. 5. Zhuge R, Wang C, Wang J, et al.hCINAP regulates the differentiation of embryonic stem cells by regulating NEDD4 liquid-liquid phase-separation-mediated YAP1 activation.Cell Reports.2023, 42(1): 111935. 6. Zhao X, Ma Y, Li J, et al.The AEG-1-USP10-PARP1 axis confers radioresistance in esophageal squamous cell carcinoma via facilitating homologous recombination-dependent DNA damage repair.Cancer Letters.2023: 216440. 7. Cao D, Duan L, Huang B, et al.The SARS-CoV-2 papain-like protease suppresses type I interferon responses by deubiquitinating STING.Science Signaling.2023, 16(783): eadd0082. 8. Li Y M, Mei Y C, Liu A H, et al.Gcn5-and Bre1-mediated Set2 degradation promotes chronological aging of Saccharomyces cerevisiae.Cell Reports.2023, 42(10). 9. Lin X, Lin T, Wang X, et al.Sesamol serves as a p53 stabilizer to relieve rheumatoid arthritis progression and inhibits the growth of synovial organoids.Phytomedicine.2023: 155109. 10. Zhu X, Huang N, Ji Y, et al.Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway.Biomedicine & Pharmacotherapy.2023, 167: 115567.
11. Zhao L, Zhang W, Luan F, et al.Butein suppresses PD-L1 expression via downregulating STAT1 in non-small cell lung cancer.Biomedicine & Pharmacotherapy.2023, 157: 114030. 12. Zhang J, Chen W, Li X, et al.Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling.Plant Physiology.2023: kiad399. 13. Zhang M, Jia X, Cheng C, et al.Capsaicin functions as a selective degrader of STAT3 to enhance host resistance to viral infection.Acta Pharmacologica Sinica.2023: 1-12. 14. Wu K, Zhang Y, Liu Y, et al.Phosphorylation of UHRF2 affects malignant phenotypes of HCC and HBV replication by blocking DHX9 ubiquitylation.Cell Death Discovery.2023, 9(1): 27. 15. Li X, Gao D, Shen F, et al.Polymerase iota (POLI) confers radioresistance of esophageal squamous cell carcinoma by regulating RAD51 stability and facilitating homologous recombination.Cell Death Discovery.2023, 9(1): 291. 16. Shi C J, Lv M Y, Deng L Q, et al.Linc-ROR drive adriamycin resistance by targeting AP-2α/Wnt/β-catenin axis in hepatocellular carcinoma.Cell Biology and Toxicology.2022: 1-18. 17. Fu Y, Cao T, Zou X, et al.AKT1 regulates UHRF1 protein stability and promotes the resistance to abiraterone in prostate cancer.Oncogenesis.2023, 12(1): 1-12. 18. Wang Y, Li B, Liu G, et al.Corilagin attenuates intestinal ischemia/reperfusion injury in mice by inhibiting ferritinophagy-mediated ferroptosis through disrupting NCOA4-ferritin interaction.Life Sciences.2023: 122176. 19. Ren L, Luo H, Zhao J, et al.An integrated in vitro/in silico approach to assess the anti-androgenic potency of isobavachin.Food and Chemical Toxicology.2023: 113764. 20. Liang Y, Qian Y, Tang J, et al.Arsenic trioxide promotes ERK1/2-mediated phosphorylation and degradation of BIMEL to attenuate apoptosis in BEAS-2B cells.Chemico-Biological Interactions.2022: 110304. 21. Liu Z, Luo P, Cao K, et al.SIAH1/CTR9 axis promotes the epithelial-mesenchymal transition of hepatocellular carcinoma.Carcinogenesis.2023: bgad021. 22. Zhao J, Sun Y, Ren L, et al.Antagonism of androgen receptor signaling by aloe-emodin.Food and Chemical Toxicology.2023: 114092. 23. Cao K, Liu Z, Liu J, et al.Constitutive photomorphogenic protein 1 ubiquitinates interleukin-1 receptor accessory protein in human liver cancer.Journal of Cancer Research and Clinical Oncology.2023: 1-14. 24. Wang Y Z, Qian Y C, Yang W J, et al.CHD1 deletion stabilizes HIF1α to promote angiogenesis and glycolysis in prostate cancer.Asian Journal of Andrology.2023 25. Luo Q, Wu X, Zhao P, et al.OTUD1 activates caspase‐independent and caspase‐dependent apoptosis by promoting AIF nuclear translocation and MCL1 degradation.Advanced Science.2021, 8(8): 2002874. 26. Zhou W J, Li H, Zhang K K, et al.Genetically Encoded Sensor Enables Endogenous RNA Imaging with Conformation-Switching Induced Fluorogenic Proteins. Journal of the American Chemical Society.2021,143(35): 14394-14401. 27. Wang Y, Wang K, Fu J, et al. FRK inhibits glioblastoma progression via phosphorylating YAP and inducing its ubiquitylation and degradation by Siah1.Neuro-oncology. 2022 28. Zhang Z D, Xiong T C, Yao S Q, et al. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nature communications.2020,11(1): 1-17. 29. Zhao Y, Huang X, Zhu D, et al. Deubiquitinase OTUD6A promotes breast cancer progression by increasing TopBP1 stability and rendering tumor cells resistant to DNA-damaging therapy. Cell Death & Differentiation. 2022: 1-14 30. Wu H, Cheng J, Huang Y, et al. TRIM21 and PHLDA3 Negatively Regulate the Cross-Talk between the PI3K/AKT Pathway and PPP Metabolism. Nature Communications. 2020, 11(1): 1-16. 31. Zhu D, Xu R, Huang X, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death & Differentiation. 2020: 1-17 32. Chang W, Luo Q, Wu X, et al. OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis. Cell Reports. 2022, 41(4): 111561 33. Li Q, Chu Y, Li S, et al. The oncoprotein MUC1 facilitates breast cancer progression by promoting Pink1-dependent mitophagy via ATAD3A destabilization. Cell Death & Disease. 2022, 13(10): 1-16. 34. Chen J, Wei X, Wang X, et al. TBK1-METTL3 Axis Facilitates Antiviral Immunity. Cell Reports. 2022, 38(7): 110373. 35. Fu R, Yang P, Li Z, et al. Avenanthramide A triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death & Disease. 2019, 10(8): 1-14 36. Luo Q, Wu X, Nan Y, et al. TRIM32/USP11 balances ARID1A stability and the oncogenic/tumor-suppressive status of squamous cell carcinoma. Cell Reports, 2020, 30(1): 98-111. e5. 37. Gong L, Liao S, Duan W, et al. OsCPL3 is involved in brassinosteroid signaling by regulating OsGSK2 stability. Journal of Integrative Plant Biology. 2022 38. Xiao Q, Lei L, Ren J, et al. Mutant NPM1-Regulated FTO-Mediated m6A Demethylation Promotes Leukemic Cell Survival via PDGFRB/ERK Signaling Axis. Frontiers in Oncology. 2022.12 39. Hussain M, Lu Y, Tariq M, et al. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. Iscience. 2022, 25(7): 104591. 40. Li C F, Sun J X, Gao Y, et al. Clinorotation-induced autophagy via HDM2-p53-mTOR pathway enhances cell migration in vascular endothelial cells. Cell Death & Disease. 2018 Feb 2;9(2):147 41. Qu X, Liu H, Song X, et al. Effective degradation of EGFRL858R+ T790M mutant proteins by CRBN-based PROTACs through both proteosome and autophagy/lysosome degradation systems. European Journal of Medicinal Chemistry. 2021, 218: 113328. 42. Zhou C, Huang Y, Li Y, et al. A new small-molecule compound, Q308, silences latent HIV-1 provirus by suppressing Tat-and FACT-mediated transcription. Antimicrobial Agents and Chemotherapy, 2021, 65(12): 10.1128/aac. 00470-21. 43. Su L, Tu Y, Kong D, et al. Drug repurposing of anti-infective clinical drugs: Discovery of two potential anti-cytokine storm agents. Biomedicine & Pharmacotherapy. 2020, 131: 110643 44. Su K W, Ou D L, Fu Y H, et al. Repurposing cabozantinib with therapeutic potential in KIT-driven t (8; 21) acute myeloid leukaemias. Cancer Gene Therapy, 2022, 29(5): 519-532. 45. Chu S, Bi H, Li X, et al. Up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of combination of monoammonium glycyrrhizinate and cysteine hydrochloride induced by CCl4. European Journal of Pharmacology. 2021: 174628. 46. Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE ‐induced selective autophagy by conjugation with K63 polyubiquitin chain. Cellular Microbiology. 2019, 21(4): e12984 47. Lu J, Hu Z, Deng Y, et al. MEKK2 and MEKK3 orchestrate multiple signals to regulate Hippo pathway. Journal of Biological Chemistry, 2021, 296. 48. Pan X, Li R, Guo H, et al. Dihydropyridine calcium channel blockers suppress the transcription of PD-L1 by inhibiting the activation of STAT1. Frontiers in Pharmacology, 2021, 11: 539261. 49. Zhang C L, Wang X M, Yang J, et al. The retracted conformation of ubiquitin Ser65 phosphorylation inhibits the formation of K48-linked ubiquitin chains. Bioscience Reports. 2022 50. Zhang M, Du H, Wang L, et al. Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chemico-Biological Interactions. 2020: 109022 51. Guzmán-Téllez P, Martínez-Valencia D, Silva-Olivares A, et al. proteasome: identification and characterization. European Journal of Cell Biology. 2020: 151085. 52. Zhao J, Zhai Q. A highly selective switch-on fluorescence sensor targeting telomeric dimeric G-quadruplex. Bioorganic & Medicinal Chemistry Letters, 2021, 40: 127971. 53. Tian T, Xie X, Yi W, et al.FBXO38 mediates FGL1 ubiquitination and degradation to enhance cancer immunity and suppress inflammation.Cell Reports.2023, 42(11). 54. Che Y, Li J, Wang P, et al.Iron deficiency–induced ferritinophagy impairs skeletal muscle regeneration through RNF20-mediated H2Bub1 modification.Science Advances.2023, 9(46): eadf4345. 55. Zhang M, Tan H, Gong Y, et al.TRIM26 restricts Epstein–Barr virus infection in nasopharyngeal epithelial cells through K48‐linked ubiquitination of HSP‐90β.The FASEB Journal.2024, 38(1): e23345. 56. Wang J, Aniwan A, Liu H, et al.O-GlcNAcylation regulates HIF-1α and induces mesothelial-mesenchymal transition and fibrosis of human peritoneal mesothelial cells.Heliyon.2023 57. Li B, Zhou Q, Wan Q, et al.EZH2 K63-polyubiquitination affecting migration in extranodal natural killer/T-cell lymphoma.Clinical Epigenetics.2023, 15(1): 187. 58. Sun C, Chen Y, Gu Q, et al.UBE3C tunes autophagy via ATG4B ubiquitination.Autophagy.2023 (just-accepted). 59. Liu T, Zhang T, Guo C, et al.Murine double minute 2-mediated estrogen receptor 1 degradation activates macrophage migration inhibitory factor to promote vascular smooth muscle cell dedifferentiation and oxidative stress during thoracic aortic aneurysm progression.Biochimica et Biophysica Acta (BBA)-Molecular Cell Research.2024, 1871(3): 119661. 60. Wang Y, Li X, Guan X, et al.The Upregulation of Leucine-Rich Repeat Containing 1 Expression Activates Hepatic Stellate Cells and Promotes Liver Fibrosis by Stabilizing Phosphorylated Smad2/3.International Journal of Molecular Sciences.2024, 25(5): 2735. 61. Lei X, Li Z, Huang M, et al.Gli1-mediated tumor cell-derived bFGF promotes tumor angiogenesis and pericyte coverage in non-small cell lung cancer.Journal of Experimental & Clinical Cancer Research.2024, 43(1): 1-18. 62. Guo Y Y, Gao Y, Zhao Y L, et al.Viral infection and spread are inhibited by the polyubiquitination and downregulation of TRPV2 channel by the interferon-stimulated gene TRIM21.Cell Reports.2024, 43(4).
收起
IACS-010759 MRS 2578 NVP-TAE 684 NQDI-1 OSI-930 Apremilast UCF 101 Sulforaphene

相关化合物库

该产品包含在如下化合物库中:
抑制剂库 抗癌活性化合物库 经典已知活性库 已知活性化合物库 共价抑制剂库 抗癌化合物库 抗衰老化合物库 细胞凋亡化合物库 NO PAINS 化合物库 表型筛选靶点鉴定库

TargetMol Calculator剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

TargetMol Calculator 体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

MG-132 133407-82-6 Apoptosis Autophagy Proteases/Proteasome Ubiquitination Proteasome Inhibitor MG 132 complex peptide calpain MG132 Z-LLL-al proteolytic aldehyde inhibit Z-Leu-Leu-Leu-CHO 26S inhibitor

 

TargetMol Loading
陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼