首页 工具
登录
购物车
Ferrostatin-1

Ferrostatin-1

产品编号 T6500   CAS 347174-05-4
别名: Ferrostatin 1, Ferrostatin-1 (Fer-1)

Ferrostatin-1 (Fer-1) 是一种铁死亡抑制剂,具有强效性和选择性。Ferrostatin-1 有效抑制 Erastin 诱导的 HT-1080 细胞铁死亡 (EC50=60 nM)。Ferrostatin-1 还具抗氧化和抗真菌活性。

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
Ferrostatin-1 Chemical Structure
Ferrostatin-1, CAS 347174-05-4
规格 价格/CNY 货期 数量
5 mg ¥ 544 现货
10 mg ¥ 966 现货
25 mg ¥ 1,996 现货
50 mg ¥ 3,523 现货
200 mg ¥ 5,750 现货
500 mg ¥ 8,810 现货
1 mL * 10 mM (in DMSO) ¥ 598 现货
千万补贴 助力科研
BCA蛋白浓度测定试剂盒限时半价
重组蛋白限时优惠
Paclitaxel限时半价
产品目录号及名称: Ferrostatin-1 (T6500)
点击图片重新获取验证码
选择批次  
纯度: 99.68%
纯度: 99.51%
纯度: 99.07%
纯度: 99.07%
纯度: 96.1%
TargetMol batch loading
更多批次查询请联系客服
生物活性
化学信息
存储 & 溶解度
参考文献
产品描述 Ferrostatin-1 (Fer-1) is a potent and selective inhibitor of iron death. Ferrostatin-1 potently inhibits Erastin-induced iron death in HT-1080 cells with an EC50 of 60 nM. Ferrostatin-1 also exhibits antioxidant and antifungal activities.
靶点活性 Ferroptosis:60 nM(EC50, HT-1080 cells)
体外活性 方法:人支气管上皮细胞 BEAS-2B 用 LPS (10 mg/L) 和 Ferrostatin-1 (2 μM) 共同处理 16 h,使用 CCK-8 方法检测细胞生长抑制情况。
结果:Ferrostatin-1 可减轻LPS诱导的细胞损伤。[1]
方法:人纤维肉瘤细胞 HT-1080 用 Ferrostatin-1 (0.5 μM)和 Erastin (10 µM) 处理 4 h,使用 Flow Cytometry 方法检测细胞产生的 ROS 水平。
结果:Ferrostatin-1 抑制了 Erastin 诱导的胞质和脂质 ROS 的积累。[2]
方法:小鼠海马神经元细胞 HT-22 用 Ferrostatin-1 (3-12 μM) 处理 16 h 再加 5 mM glutamate 处理 24 h,检测 LDH 的释放水平。
结果:Glutamate 处理后 LDH 的释放显著增加,Ferrostatin-1 处理可抑制 LDH 的释放。[3]
体内活性 方法:为研究铁死亡是否与 LPS 诱导的急性肾损伤 (AKI) 有关,将 Ferrostatin-1 (5 mg/kg) 单剂量腹腔注射给 C57BL/6 小鼠,30 min 后腹腔注射 LPS (10 mg/kg) 诱导感染性 AKI。
结果:Ferrostatin-1 显著保护小鼠免受 LPS 诱导的 AKI 中的肾功能障碍和肾小管损伤。[4]
方法:为研究铁紊乱是否与急性肝病的关系及其分子机制,将 Ferrostatin-1 (2.5 μM/kg) 腹腔注射给 ICR 小鼠,每天一次,持续三天,随后连续3天腹腔注射 TAA (250 mg/kg/天),建立小鼠急性肝损伤 (ALI) 模型。
结果:Ferrostatin-1 预处理显著降低了 TAA 诱导的血浆 ALT、AST 和 LDH 水平的变化,抑制了 TfR1、Fpn 和 Ft-L 蛋白的表达,并减少了铁的积累,但不影响肝脏中 xCT 或 GPX4 的表达。Ferrostatin-1 通过降低肝脏中的铁含量来预防肝脏铁死亡。[5]
细胞实验 Cell viability was typically assessed in 384-well format by Alamar Blue fluorescence (ex/em 530/590) measured on a Victor3 plate reader. In some experiments, Trypan Blue dye exclusion counting was performed using an automated cell counter. Cell viability under test conditions is reported as a percentage relative to the negative control treatment [1].
别名 Ferrostatin 1, Ferrostatin-1 (Fer-1)
分子量 262.35
分子式 C15H22N2O2
CAS No. 347174-05-4

存储

keep away from direct sunlight | Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

5% DMSO+95% Saline: 10 mg/mL (38.12 mM, precipitation)

Ethanol: 26.2 mg/mL (100 mM)

DMSO: 45 mg/mL (171.53 mM)

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
5% DMSO+95% Saline / Ethanol / DMSO 1 mM 3.8117 mL 19.0585 mL 38.117 mL 95.2925 mL
5 mM 0.7623 mL 3.8117 mL 7.6234 mL 19.0585 mL
10 mM 0.3812 mL 1.9059 mL 3.8117 mL 9.5293 mL
20 mM 0.1906 mL 0.9529 mL 1.9059 mL 4.7646 mL
Ethanol / DMSO 50 mM 0.0762 mL 0.3812 mL 0.7623 mL 1.9059 mL
100 mM 0.0381 mL 0.1906 mL 0.3812 mL 0.9529 mL

TargetMol Calculator计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

TargetMol Library Books参考文献

1. Liu P, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett. 2020 Feb 27;25:10. 2. Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012 May 25;149(5):1060-72. 3. Chu J, et al. Ferrostatin-1 protects HT-22 cells from oxidative toxicity. Neural Regen Res. 2020 Mar;15(3):528-536. 4. Tang Y, et al. Isoliquiritigenin attenuates septic acute kidney injury by regulating ferritinophagy-mediated ferroptosis. Ren Fail. 2021 Dec;43(1):1551-1560. 5. Jiang H, et al. Ferrostatin-1 Ameliorates Liver Dysfunction via Reducing Iron in Thioacetamide-induced Acute Liver Injury in Mice. Front Pharmacol. 2022 Apr 12;13:869794. 6. Chen X, Gao C, Cheng Z, et al. Ruxolitinib exerts neuroprotection via repressing ferroptosis in a mouse model of traumatic brain injury[J]. Experimental Neurology. 2021: 113762. 7. Yin W, Luan X, Li Z, et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin[J]. Nature Structural & Molecular Biology. 2021: 1-7. 8. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics[J]. ACS nano. 2018 Dec 26;12(12):12380-12392.

TargetMol Library Books文献引用

1. Hu G, Cui Z, Chen X, et al.Suppressing Mesenchymal Stromal Cell Ferroptosis Via Targeting a Metabolism‐Epigenetics Axis Corrects their Poor Retention and Insufficient Healing Benefits in the Injured Liver Milieu.Advanced Science.2023: 2206439. 2. Bi G, Liang J, Shan G, et al.Retinol saturase mediates retinoid metabolism to impair a ferroptosis defense system in cancer cells.Cancer Research.2023: CAN-22-3977. 3. Li Y, Yang W, Zheng Y, et al.Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis.Journal of Experimental & Clinical Cancer Research.2023, 42(1): 1-19. 4. Xiang P, Chen Q, Chen L, et al.Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoE-/-mice.Theranostics.2023, 13(14): 4993. 5. Zeng S T, Shao W, Yu Z Y, et al.Construction of a TICT-AIE-Integrated Unimolecular Platform for Imaging Lipid Droplet–Mitochondrion Interactions in Live Cells and In Vivo.ACS Sensors.2022 6. Wang X, Ji Y, Qi J, et al.Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells.Cell Death & Disease.2023, 14(8): 1-13. 7. Tan Q, Zhang X, Li S, et al.DMT1 differentially regulates mitochondrial complex activities to reduce glutathione loss and mitigate ferroptosis.Free Radical Biology and Medicine.2023 8. Chen T, Leng J, Tan J, et al.Discovery of Novel Potent Covalent Glutathione Peroxidase 4 Inhibitors as Highly Selective Ferroptosis Inducers for the Treatment of Triple-Negative Breast Cancer.Journal of Medicinal Chemistry.2023 9. Wu Z, Lin C, Zhang F, et al.TIGD1 Function as a Potential Cuproptosis Regulator Following a Novel Cuproptosis-Related Gene Risk Signature in Colorectal Cancer.Cancers.2023, 15(8): 2286. 10. Zhao G, Liang J, Shan G, et al.KLF11 regulates lung adenocarcinoma ferroptosis and chemosensitivity by suppressing GPX4.Communications Biology.2023, 6(1): 570.
11. Wu Y T, Zhong L S, Huang C, et al.β-Caryophyllene Acts as a Ferroptosis Inhibitor to Ameliorate Experimental Colitis.International Journal of Molecular Sciences.2022, 23(24): 16055. 12. Wang Y, Li B, Liu G, et al.Corilagin attenuates intestinal ischemia/reperfusion injury in mice by inhibiting ferritinophagy-mediated ferroptosis through disrupting NCOA4-ferritin interaction.Life Sciences.2023: 122176. 13. Liu Q, Song T, Chen B, et al.Ferroptosis of brain microvascular endothelial cells contributes to hypoxia‐induced blood–brain barrier injury.The FASEB Journal.2023, 37(5): e22874. 14. Liu J, Pan Z, Tong B, et al.Artesunate protects against ocular fibrosis by suppressing fibroblast activation and inducing mitochondria‐dependent ferroptosis.The FASEB Journal.2023, 37(6): e22954. 15. Ling M, Ye L, Zeng Q, et al.Ferrostatin-1 alleviates ventilator-induced lung injury by inhibiting ferroptosis.International Immunopharmacology.2023, 120: 110356. 16. Jiang X, Teng X, Shi H, et al.Discovery and optimization of olanzapine derivatives as new ferroptosis inhibitors.Bioorganic Chemistry.2023: 106393. 17. Li J, Lu Q, Peng M, et al.Water extract from Herpetospermum pedunculosum attenuates oxidative stress and ferroptosis induced by acetaminophen via regulating Nrf2 and NF-κB pathways.Journal of Ethnopharmacology.2023, 305: 116069. 18. Zhao C, Wang C, Liu M, et al.Single-cell transcriptomes reveal heterogeneity of chlorine-induced mice acute lung injury and the inhibitory effect of pentoxifylline on ferroptosis.Scientific Reports.2023, 13(1): 6833. 19. Shi H, Jiang X, Cao L, et al.Chemical constituents of Ajuga forrestii and their anti-ferroptosis activity.Fitoterapia.2023: 105461. 20. Wang Z Q, Li Y Q, Wang D Y, et al.Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacity.Transl Cancer Res.2022 21. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS nano. 2018 Dec 26;12(12):12380-12392. 22. Ouyang S, Li H, Lou L, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology. 2022: 102317 23. Li W, Luo L X, Zhou Q Q, et al. Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biology. 2022: 102421. 24. Yin W, Luan X, Li Z, et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nature Structural & Molecular Biology. 2021: 1-7. 25. Mao W, Cai Y, Chen D, et al. Statin shapes inflamed tumor microenvironment and enhances immune checkpoint blockade in non-small cell lung cancer. JCI insight. 2022 26. Bi G, Liang J, Zhao M, et al. MiR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma by targeting CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Molecular Therapy-Nucleic Acids. 2022 27. Yang Y, Ma Y, Li Q, et al. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway. Cell Death & Disease. 2022, 13(6): 1-14 28. Wang F, Xie M, Chen P, et al. Homoharringtonine combined with cladribine and aclarubicin (HCA) in acute myeloid leukemia: A new regimen of conventional drugs and its mechanism. Oxidative Medicine and Cellular Longevity. 2022 29. Fang Y, Tan Q, Zhou H, et al. Discovery and optimization of 2-(trifluoromethyl) benzimidazole derivatives as novel ferroptosis inducers in vitro and in vivo. European Journal of Medicinal Chemistry. 2022: 114905. 30. Luo Y, Gao X, Zou L, et al. Bavachin Induces Ferroptosis through the STAT3/P53/SLC7A11 Axis in Osteosarcoma Cells. Oxidative Medicine and Cellular Longevity. 2021 31. Jiang H, Wang C, Zhang A, et al. ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomedicine & Pharmacotherapy. 2022, 153: 113280 32. Yu S, Li Z, Zhang Q, et al. GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered neuronal ferroptosis. Ecotoxicology and Environmental Safety. 2022, 234: 113413. 33. Zhou Y, Wu H, Wang F, et al. GPX7 Is Targeted by miR-29b and GPX7 Knockdown Enhances Ferroptosis Induced by Erastin in Glioma. Frontiers in oncology. 2021, 11: 802124-802124. 34. Li J, Chen S, Huang J, et al. New Target in an Old Enemy: Herbicide (R)-Dichlorprop Induces Ferroptosis-like Death in Plants. Journal of Agricultural and Food Chemistry. 2021 35. Zhao Y, Lu J, Mao A, et al. Autophagy Inhibition Plays a Protective Role in Ferroptosis Induced by Alcohol via the p62–Keap1–Nrf2 Pathway. Journal of Agricultural and Food Chemistry. 2021 36. Tan Q, Fang Y, Peng X, et al. A new ferroptosis inhibitor, isolated from Ajuga nipponensis, protects neuronal cells via activating NRF2-antioxidant response elements (AREs) pathway. Bioorganic Chemistry. 2021: 105177. 37. Ning X, Qi H, Yuan Y, et al. Identification of a new small molecule that initiates ferroptosis in cancer cells by inhibiting the system Xc− to deplete GSH. European Journal of Pharmacology. 2022: 175304. 38. Kong R, Wang N, Han W, et al. IFNγ‐mediated repression of system xc− drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. Journal of Leukocyte Biology. 2021, 110(2): 301-314. 39. Yang S, Pei T, Wang L, et al. Salidroside Alleviates Renal Fibrosis in SAMP8 Mice by Inhibiting Ferroptosis. Molecules. 2022, 27(22): 8039. 40. Peng X, Tan Q, Wu L, et al. Ferroptosis Inhibitory Aromatic Abietane Diterpenoids from Ajuga decumbens and Structural Revision of Two 3, 4-Epoxy Group-Containing Abietanes. Journal of Natural Products. 2022 41. Chen X, Gao C, Cheng Z, et al. Ruxolitinib exerts neuroprotection via repressing ferroptosis in a mouse model of traumatic brain injury. Experimental Neurology. 2021: 113762. 42. Yang S, Pei T, Xiong Q, et al. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer’s disease mice and glutamate-injured HT22 cells. Chinese Medicine. 2022, 17(1): 1-18 43. Sun Y, He L, Wang T, et al. Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced Ferroptosis in Dopaminergic Cells. Molecular Neurobiology. 2020, 57(11): 4628-4641. 44. Tang X, Li X, Zhang D, et al. Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2. Bioengineered. 2022, 13(4): 8240-8254. 45. Su G, Yang W, Wang S, et al. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochemical and Biophysical Research Communications. 2021, 561: 33-39. 46. Peng, Xing, et al. Discovery of phloroglucinols from Hypericum japonicum as ferroptosis inhibitors. Fitoterapia. (2021): 104984. 47. Shan G, Bi G, Zhao G, et al.Inhibition of PKA/CREB1 pathway confers sensitivity to ferroptosis in non-small cell lung cancer.Respiratory Research.2023, 24(1): 1-15. 48. Wang J, Yan J T, Zeng S T, et al.Revealing Mitochondrion–Lysosome Dynamic Interactions and pH Variations in Live Cells with a pH-Sensitive Fluorescent Probe.Analytical Chemistry.2023 49. Wang Y, He X, Xue M, et al.Germacrone protects renal tubular cells against ferroptotic death and ROS release by re-activating mitophagy in diabetic nephropathy.Free Radical Research.2023 (just-accepted): 1-36. 50. Liu L, Luo C, Zheng D, et al.TRPML1 contributes to antimony-induced nephrotoxicity by initiating ferroptosis via chaperone-mediated autophagy.Food and Chemical Toxicology.2023: 114378. 51. Liu S, Tao Y, Wu S, et al.Sanguinarine chloride induces ferroptosis by regulating ROS/BACH1/HMOX1 signaling pathway in prostate cancer.Chinese Medicine.2024, 19(1): 1-18. 52. Li Z, Zhao B, Zhang Y, et al.Mitochondria-mediated ferroptosis contributes to the inflammatory responses of bovine viral diarrhea virus (BVDV) in vitro.Journal of Virology.2024: e01880-23. 53. Chen H, Hu J, Xiong X, et al.AURKA inhibition induces Ewing’s sarcoma apoptosis and ferroptosis through NPM1/YAP1 axis.Cell Death & Disease.2024, 15(1): 99. 54. Yang X, Li W, Li S, et al.Fish oil-based microemulsion can efficiently deliver oral peptide blocking PD-1/PD-L1 and simultaneously induce ferroptosis for cancer immunotherapy.Journal of Controlled Release.2024, 365: 654-667. 55. Luo X, Li D D, Li Z C, et al.Mitigating phospholipid peroxidation of macrophages in stress-induced tumor microenvironment by natural ALOX15/PEBP1 complex inhibitors.Phytomedicine.2024: 155475. 56. Teng X, Shi H, Cao L, et al.Chemical Constituents of Ajuga lupulina and Their Anti‐ferroptosis ActivityChemical Constituents of Ajuga lupulina and Their Anti‐ferroptosis Activity.Chemistry & Biodiversity.2024: e202400244. 57. Du Y, Zhou Y, Yan X, et al.APE1 inhibition enhances ferroptotic cell death and contributes to hepatocellular carcinoma therapy.Cell Death & Differentiation.2024: 1-16. 58. Xu L, Wen B, Wu Q, et al.Long non-coding RNA KB-1460A1. 5 promotes ferroptosis by inhibiting mTOR/SREBP-1/SCD1-mediated polyunsaturated fatty acid desaturation in glioma.Carcinogenesis.2024: bgae016. 59. Tan Q, Wu D, Lin Y, et al.Identifying eleven new ferroptosis inhibitors as neuroprotective agents from FDA-approved drugs.Bioorganic Chemistry.2024: 107261. 60. Zhao J, Wang Q, Liu Z, et al.Neuroinvasive virus facilitates viral replication by employing lipid droplets to reduce arachidonic acid-induced ferroptosis.Journal of Biological Chemistry.2024: 107168. 61. Cui P, Liu T, Sheng Y, et al.Identification and validation of ferroptosis-related lncRNAs signature in intervertebral disc degeneration.Gene.2024: 148381. 62. Bi G, Liang J, Bian Y, et al.Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer.Nature Communications.2024, 15(1): 2461. 63. Liu Y, Pi F, He L, et al.Oxygen Vacancy‐Rich Manganese Nanoflowers as Ferroptosis Inducers for Tumor Radiotherapy.Small.2024: 2310118. 64. Lv S, Pan Q, Lu W, et al.Tenovin 3 induces apoptosis and ferroptosis in EGFR 19del non small cell lung cancer cells.Scientific Reports.2024, 14(1): 7654. 65. Liu L, Gao W, Yang S, et al.Ferritinophagy-Mediated Hippocampus Ferroptosis is Involved in Cognitive Impairment in Immature Rats Induced by Hypoxia Combined with Propofol.Neurochemical Research.2024: 1-17.
收起
Trigonelline Siramesine hydrochloride Alogliptin Benzoate Coenzyme Q10 Trolox Lapatinib Ditosylate (-)-Epicatechin Troglitazone

相关化合物库

该产品包含在如下化合物库中:
抑制剂库 抗代谢疾病化合物库 抗真菌库 抗感染化合物库 氧化还原化合物库 经典已知活性库 细胞凋亡化合物库 已知活性化合物库 NO PAINS 化合物库 细胞周期化合物库

TargetMol Calculator剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

TargetMol Calculator 体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

Ferrostatin-1 347174-05-4 Apoptosis Microbiology/Virology Ferroptosis Antifungal ROS inhibit Fer1 cell neurotoxicity cytosolic Ferrostatin1 Fungal antifungal antioxidant Ferrostatin 1 Fer 1 Ferrostatin-1 (Fer-1) death Inhibitor Fer-1 inhibitor

 

TargetMol Loading
陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼