首页 工具
登录
购物车
3-Methyladenine

3-Methyladenine

产品编号 T1879   CAS 5142-23-4
别名: 3-MA, 3-甲基腺嘌呤, NSC 66389

3-Methyladenine (3-MA) 是一种 PI3K 抑制剂,选择性抑制 IB 类 PI3Kγ (IC50=60 μM) 和 III 类 VPS34 (IC50=25 μM)。3-Methyladenine 具有自噬抑制活性。

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
3-Methyladenine Chemical Structure
3-Methyladenine, CAS 5142-23-4
规格 价格/CNY 货期 数量
50 mg ¥ 449 现货
100 mg ¥ 668 现货
200 mg ¥ 1,160 现货
500 mg ¥ 2,347 现货
1 mL * 10 mM (in DMSO) ¥ 136 现货
产品目录号及名称: 3-Methyladenine (T1879)
点击图片重新获取验证码
选择批次  
纯度: 99.5%
纯度: 99.3%
纯度: 98.44%
纯度: 98.02%
更多批次查询请联系客服
天然产物信息
生物活性
化学信息
存储 & 溶解度
TCMIP信息
参考文献
产品描述 3-Methyladenine (3-MA) is a PI3K inhibitor that selectively inhibits class IB PI3Kγ (IC50=60 μM) and class III VPS34 (IC50=25 μM). 3-Methyladenine inhibits autophagy.
靶点活性 PI3Kγ:60 μM (in HeLa cells), Vps34:25 μM (in HeLa cells)
体外活性 方法:人宫颈癌细胞 HeLa 用 3-Methyladenine (2.5-10 mM) 处理 48 h,使用 Trypan blue dye exclusion assay 检测细胞生长抑制情况。
结果:3-Methyladenine 以时间和剂量依赖的方式降低 HeLa 细胞活力。[1]
方法:脂肪细胞 3T3-L1 在没有血清的情况下用 3-Methyladenine (5 mM) 处理 4 h,使用 Western Blot 方法检测靶点蛋白表达水平。
结果:3-Methyladenine 显著降低了自噬标记物 LC3-II 的细胞内水平,增加了 p62 的表达,表明 3-Methyladenine 有效抑制自噬。[2]
方法:小鼠黑色素瘤细胞 B16 用 2DG (5 mM)、rotenone (1 μM) 和 3-Methyladenine (1.2-5 mM) 处理 24 h,使用 LDH release assay 检测细胞毒性。
结果:3-Methyladenine 剂量依赖性降低 2DG/rotenone 引起的 LDH 释放上调,保护肿瘤细胞免受糖酵解和线粒体呼吸抑制。[3]
体内活性 方法:为研究 3-Methyladenine 对动脉粥样硬化的影响,将 3-Methyladenine (30 mg/kg) 腹腔注射给 HFD 喂养的 ApoE−/− 小鼠,每周两次,持续八周。
结果:在高脂肪饮食喂养的小鼠中, 3-Methyladenine 治疗显著减少了动脉粥样硬化斑块的大小,并增加了病变的稳定性。3-Methyladenine 具有多种动脉粥样硬化保护作用,包括调节巨噬细胞自噬和泡沫细胞形成以及改变免疫微环境。[4]
方法:为研究自噬的调节作用,将 3-Methyladenine (15 mg/kg ) 单剂量腹腔注射给 LPS 诱导内毒素休克的 C57/BL6 小鼠。
结果: LPS 联合 3-Methyladenine 治疗的动物在内毒素血症后表现出存活率增加,血清炎症介质 TNF-α 和 IL-6 降低。[5]
细胞实验 Cells were seeded in an 8-well coverglass-bottomed chamber for 24 hours (6×10^3 cells per well). Images were acquired automatically at multiple locations on the coverglass using a Nikon TE2000E inverted microscope fitted with a 20× Nikon Plan Apo objective, a linearly-encoded stage, and a Hamamatsu Orca-ER CCD camera. A mercury-arc lamp with two neutral density filters (for a total 128-fold reduction in intensity) was used for fluorescence illumination. The microscope was controlled using NIS-Elements Advanced Research software and housed in a custom-designed 37°C chamber with a secondary internal chamber that delivered humidified 5% CO2. Fluorescence and differential interference contrast images were obtained every 10 min for a period of 48 hours. To analyze live cell imaging movies, the time-lapse records of live cell imaging experiments were exported as an image series and analyzed manually using NIS-Elements Advanced Research software. The criteria for analyses were described previously, and lagging chromosomes in prometaphase were defined as the red fluorescence-positive materials that lingered outside the roughly formed metaphase plate for more than 3 frames (30 min) [2].
动物实验 All rats were fasted for 12 h with free access to water prior to operation. After anesthesia by intraperitoneal (i.p.) injection of 2% sodium pentobarbital (0.25 mL/100 g), they were laid and fixed on the table, routinely shaven, disinfected, and draped. The rat SAP model was induced by 0.1 mL/min speed uniformly retrograde infusion of a freshly prepared 3.5% sodium taurocholate solution (0.1 mL/100 g) into the biliopancreatic duct after laparotomy. Equivalent volume of normal saline solution was substituted for 3.5% sodium taurocholate solution in the sham-operation (SO) control group. The incision was closed with a continuous 3-0-silk suture, and 2 mL/100 g of saline was injected into the back subcutaneously to compensate for the fluid loss. 180 rats were randomly divided into four groups: (1) Acanthopanax treatment group (Aca group, n = 45) where the rats were injected with 0.2% Acanthopanax injection at a dose of 3.5 mg/100 g 3 h after successful modeling via the vena caudalis once, knowing that this dosage was effective as proven in our previous experiment; (2) 3-Methyladenine treatment group (3-methyladenine group, n = 45) where the rats were injected with 100 nmol/μL 3-methyladenine solution at a dose of 1.5 mg/100 g 3 h after successful modeling via the intraperitoneal route once, knowing that this dosage was effective as proven in the literature [6]; (3) SAP model group (SAP group, n = 45) where these rats received an equivalent volume of the normal saline instead of Acanthopanax injection 3 h after successful modeling via the vena caudalis once; (4) SO group (control, n = 45) where these rats received an equivalent volume of the normal saline instead of Acanthopanax injection 3 h after successful sham-operation via the vena caudalis once. The 45 animals in each of the four groups were equally randomized into 3, 12, and 24 h subgroups for postoperative observations [4].
别名 3-MA, 3-甲基腺嘌呤, NSC 66389
化合物与蛋白结合的复合物

T1879_2

Crystal Structure of 3-methyladenine DNA Glycosylase I (TAG) bound to DNA/3mA

分子量 149.15
分子式 C6H7N5
CAS No. 5142-23-4

存储

store at low temperature,keep away from direct sunlight | Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

DMSO: 3 mg/mL (20.11 mM), warmed,The compound is unstable in solution and is recommended to be prepared and used immediately.

Ethanol: 4 mg/mL (26.81 mM)

H2O: 8 mg/mL

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
DMSO / Ethanol 1 mM 6.7047 mL 33.5233 mL 67.0466 mL 167.6165 mL
5 mM 1.3409 mL 6.7047 mL 13.4093 mL 33.5233 mL
10 mM 0.6705 mL 3.3523 mL 6.7047 mL 16.7616 mL
20 mM 0.3352 mL 1.6762 mL 3.3523 mL 8.3808 mL
TCMIP相关数据
中药材来源及性味归经
所属中成药
所属中药方剂

中药材来源及性味归经

中药材名称 中药材拉丁名 归经
黄芩 Scutellaria baicalensis Georgi 肺, 胆, 脾, 大肠, 小肠

所属中成药

中成药名称 处方组成 主治疾病 中成药类型
百咳静颗粒 黄芩,桑白皮,瓜蒌仁,前胡,百部,麻黄,桔梗,苦杏仁,紫苏子,清半夏 口服,1-2岁 每次1.5克 ,3-5岁 每次2.5克 ,6-14岁 每次3-5克 。 一次3次。 化痰、止咳、平喘药
鼻通滴鼻剂 苍耳子(炒),辛夷,白芷,鹅不食草,薄荷,黄芩,甘草 外用滴鼻。一次2-3滴,一日3-4次。 清热药
白蒲黄颗粒 白头翁,蒲公英,黄芩,黄柏 开水冲服,一次1袋,一日3次。 清热药
白蒲黄胶囊 白头翁,蒲公英,黄芩,黄柏 口服,一次3~6片,一日3次。 清热药
补肾健脾口服液 黄精,山楂,白术(土炒),鸡内金(砂烫),巴戟天,锁阳,黄芩,蚕蛹 口服,一次10毫升,一日2次,早晚空腹服。 扶正药
表热清胶囊 柘树根,石膏,南板蓝根,金银花,柴胡,黄芩,甘草 口服,一次15g,一日3次。 清热药
安脑牛黄胶囊 人工牛黄,朱砂,冰片,石膏,金银花,连翘,栀子,黄芩,知母,郁金香,钩藤,雄黄,黄连,珍珠,辛夷,大青叶,石菖蒲,水牛角浓缩粉 口服,一日4-6粒,一日2-3次;或遵医嘱。 安神药
表热清颗粒 柘树根,南板蓝根,石膏,金银花,柴胡,黄芩,甘草 口服,一次15克,一日3次。 清热药
鼻渊舒胶囊 辛夷,苍耳子,栀子,黄芩,黄芪,川芎,柴胡,细辛,薄荷,川木通,茯苓,白芷,桔梗 口服。3~4粒/次,3次/日。 清热药
参柏洗液 苦参,黄柏,丹参,大青叶,硼砂,大黄,黄芩,黄连,甘草,蛇床子,土茯苓 外用。以本品适量直接洗浴3~5分钟,或加水稀释后浸泡,然后用清水冲洗即可。 清热药
参柏舒阴洗液 苦参,黄柏,丹参,大青叶,硼砂,大黄,黄芩,黄连,甘草,蛇床子,土茯苓 外阴炎:用10%浓度的洗液100ml坐浴擦洗,每次5分钟,每日1次,七日为一疗程;阴道炎:采用10%浓度洗液100ml,以阴道灌洗器进行缓慢注入阴道内冲洗,每次5分钟,每日一次七日为一疗程。 扶正药
鳖甲煎丸 鳖甲胶,阿胶,蜂房(炒),鼠妇虫,土鳖虫(炒),蜣螂,硝石(精制),柴胡,黄芩,半夏(制),党参,干姜,厚朴(姜制),桂枝,白芍(炒),射干,桃仁,牡丹皮,大黄,凌霄花,葶苈子,石韦,瞿麦 口服。一次3g,一日2~3次。 祛瘀药
半夏和胃颗粒 半夏(姜制),黄芩,干姜,黄连,党参,炙甘草,大枣 温开水冲服。一次10g,一日3次。 化痰、止咳、平喘药
鼻渊通窍颗粒 辛夷,苍耳子(炒),麻黄,白芷,薄荷,藁本,黄芩,连翘,野菊花,天花粉,地黄,丹参,茯苓,甘草 开水冲服,一次15g,一日3次。 清热药
百咳静糖浆(低糖型) 黄芩,桑白皮,瓜蒌仁(炒),前胡,百部(蜜炙),麻黄(蜜炙),桔梗,苦杏仁(炒),紫苏子(炒),清半夏,陈皮,麦冬,黄柏,甘草,葶苈子(炒),天南星(炒) 口服,1~2岁一次5毫升,3~5岁一次lO毫升;成人~次20~25毫升,一日三次。 化痰、止咳、平喘药
冰黄肤乐软膏 大黄,姜黄,硫黄,黄芩,甘草,冰片,薄荷脑 外用,涂搽患处。每日3次。 清热药
安宫牛黄丸 牛黄,水牛角浓缩粉,麝香,珍珠,朱砂,雄黄,黄连,黄芩,栀子,郁金,冰片 口服。一次 1 丸,一日 1 次;小儿三岁以内一次 1/4 丸,四岁至六岁一次1/2 丸,一日 1 次;或遵医嘱。 清热药
安宫牛黄栓 人工牛黄,麝香,珍珠,朱砂,雄黄,黄连,黄芩,栀子,郁金,冰片,水牛角浓缩粉 直肠给药,一次一粒。小儿三岁以内,一次0.75克,4-6岁一次1.5克,成人一次3g,一日1次;或遵医嘱。 开窍药
安宫牛黄胶囊 牛黄,水牛角浓缩粉,麝香,雄黄,朱砂,珍珠,黄芩,栀子,郁金,冰片,黄连 一次2粒,一日3次,小儿酌减,或遵医嘱。 开窍药
安宫牛黄散 人工牛黄,水牛角浓缩粉,人工麝香,珍珠,朱砂,雄黄,黄连,黄芩,栀子,郁金,冰片 口服。一次1.6g,一日1次;小儿三岁以内一次0.4g,四岁至六岁一次0.8g,一日1次;或遵医嘱。 开窍药

所属中药方剂

方剂名称 处方组成 剂型 处方来源
五味子散2 五味子,甘草,当归,人参,白术,麦冬,赤茯苓,桔梗,前胡,黄芩 散剂 《圣惠》卷八十四。
五香枳实汤 青木香,麝香,鸡舌香,熏陆香,沉香,升麻,黄芩,白蔹,麻黄,防风,秦艽,枳实,大黄,漏芦 汤剂 《千金》卷五。
五香汤4 麝香,青木香,鸡舌香,藿香,熏陆香,当归,黄芩,升麻,芒硝,大黄 汤剂 《外台》卷二十三引《崔氏方》。
五味汤2 五味子,黄芩,柴胡,芒硝,麦冬,石膏,黄连,甘草,当归,大黄 汤剂 《幼幼新书》卷十四引《婴孺方》。
五味竹叶汤 竹叶,五味子,前胡,当归,干地黄,人参,小麦,黄芪,黄芩,麦冬,生姜,炙甘草,升麻,大枣,肉桂 汤剂 《鬼遗》卷三。
五味子汤12 五味子,甘草,当归,大黄,芒硝,麦冬,黄芩,前胡,石膏,黄连 汤剂 《千金》卷五。
五香散7 沉香,木香,熏陆香,麝香,丁香,羚羊角,连翘,黄芩,升麻,麦冬,赤芍,玄参,当归,犀牛角,甘草,地骨皮,大黄,黄芪 散剂 《圣惠》卷六十六。
五黄丸 大黄,芒硝,甘草,生地黄,栀子,黄芩,黄连 丸剂 《洁古家珍》。
五味子汤19 五味子,紫苏子,麻黄,细辛,紫菀,黄芩,甘草,人参,肉桂,当归,半夏 汤剂 《圣济总录》卷十九。
五香丸3 沉香,青木香,丁香,朱砂,麝香,犀牛角,熏陆香,栀子,连翘,石膏,芒硝,升麻,大青,干蓝,瓜蒌,葛根,茵陈,黄芩,肉桂,川芎,茯苓,巴豆,大黄 丸剂 《外台》卷三十七。
五痔散 赤小豆,黄芪,附子,白蔹,肉桂,芍药,黄芩 散剂 《外台》卷二十六引《小品方》。
五淋散3 赤茯苓,当归,生地黄,泽泻,黄芩,甘草,木通,赤芍,车前子,滑石,山栀 散剂 《良朋汇集》卷二。
五黄汤 黄芪,黄连,黄芩,黄柏,大黄 汤剂 《活幼心书》卷下。
五香丸5 青木香,犀牛角,升麻,羚羊角,黄芩,栀子,沉香,丁香,熏陆香,麝香,鬼臼,大黄,芒硝 丸剂 《外台》卷十三引《延年方》。
五泻汤 黄柏,知母,木通,栀子,生地黄,甘草,太白参,桔梗,黄芩,防风 汤剂 《银海精微》卷上。
五苓平胃汤 柴胡,黄芩,苍术,半夏,甘草,白术,陈皮,茯苓,厚朴,猪苓,泽泻,桂枝 汤剂 《嵩崖尊生》卷九。
五味子汤14 五味子,前胡,当归,黄芪,干地黄,人参,小麦,黄芩,麦冬,炙甘草,桂枝,升麻 汤剂 《圣济总录》卷一八三。
五苓散加葵子汤 赤苓,猪苓,葵花子,枳实,瞿麦,车前,木通,黄芩,滑石,甘草 汤剂 《蒿崖尊生》卷十三。
五香汤 麝香,木香,丁香,沉香,乳香,芍药,枳实,射干,连翘,黄芩,麻黄,升麻,甘草,大黄 汤剂 《伤寒总病论》卷四。
五香丸6 青木香,麝香,沉香,苏合香,鸡舌香,犀牛角,吴蓝,黄连,栀子,当归,炙甘草,防风,黄芪,黄芩,芍药,红蓼,升麻,大黄,巴豆 丸剂 《医方类聚》卷二四八引《保童秘要》。

计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

参考文献

1. Hou H, et al. Inhibitors of phosphatidylinositol 3'-kinases promote mitotic cell death in HeLa cells. PLoS One. 2012;7(4):e35665. 2. Heckmann BL, et al. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br J Pharmacol. 2013 Jan;168(1):163-71. 3. Kosic M, et al. 3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms. J Pharmacol Sci. 2021 Sep;147(1):156-167. 4. Dai S, et al. Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE-/- mice by modulating autophagy, foam cell formation and immune-negative molecules. Cell Death Dis. 2016 Dec 1;7(12):e2498. 5. Li Q, et al. Inhibition of autophagy with 3-methyladenine is protective in a lethal model of murine endotoxemia and polymicrobial sepsis. Innate Immun. 2018 May;24(4):231-239. 6. hang C, Liu Z, Zhang Y, et al. Z“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis[J]. Cell Death & Disease. 2020, 11(3): 1-15. 7. Shang Z, Zhang T, Jiang M, et al. High-carbohydrate, High-fat Diet-induced Hyperlipidemia Hampers the Differentiation Balance of Bone Marrow Mesenchymal Stem Cells by Suppressing Autophagy via the AMPK/mTOR Pathway in Rat Models[J]. 2020. 8. Xia Y, Chen J, Yu Y, et al. Compensatory combination of mTOR and TrxR inhibitors to cause oxidative stress and regression of tumors[J]. Theranostics. 2021, 11(9): 4335. 9. Zhang H, Cui Z, Cheng D, et al. RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis[J]. Autophagy . 2020 10. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics[J]. ACS nano. 2018 Dec 26;12(12):12380-12392.

文献引用

1. Yan C, Zheng L, Jiang S, et al.Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity.Cancer Cell.2023 2. Liu X, Fang Y, Lv X, et al.Deubiquitinase OTUD6A in macrophages promotes intestinal inflammation and colitis via deubiquitination of NLRP3.Cell Death & Differentiation.2023: 1-15. 3. Zhang J, Zhou E C, He Y, et al.ZYG11B potentiates the antiviral innate immune response by enhancing cGAS-DNA binding and condensation.Cell Reports.2023, 42(3). 4. Wang X, Ji Y, Qi J, et al.Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells.Cell Death & Disease.2023, 14(8): 1-13. 5. Long T, Chen X, Zhang Y, et al.Protective effects of Radix Stellariae extract against Alzheimer's disease via autophagy activation in Caenorhabditis elegans and cellular models.Biomedicine & Pharmacotherapy.2023, 165: 115261. 6. Wu Z, Lin C, Zhang F, et al.TIGD1 Function as a Potential Cuproptosis Regulator Following a Novel Cuproptosis-Related Gene Risk Signature in Colorectal Cancer.Cancers.2023, 15(8): 2286. 7. Zhang W, Li X, Jiang M, et al.SOCS3 deficiency-dependent autophagy repression promote the survival of early-stage myeloid-derived suppressor cells in breast cancer by activating the Wnt/mTOR pathway.Journal of Leukocyte Biology.2023: qiad020. 8. Jiao J, Ruan L, Cheng C, et al.Paired protein kinases PRKCI-RIPK2 promote pancreatic cancer growth and metastasis via enhancing NF-κB/JNK/ERK phosphorylation.Molecular Medicine.2023, 29(1): 1-17. 9. Cao P, Wang Y, Zhang C, et al.Quercetin ameliorates non-alcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy.The Journal of Nutritional Biochemistry.2023: 109414. 10. Zhang Y, Wu K, Liu Y, et al.UHRF2 promotes the malignancy of hepatocellular carcinoma by PARP1 mediated autophagy.Cellular Signalling.2023: 110782.
11. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 12. Xiong R, Zhou X G, Tang Y, et al. Lychee seed polyphenol protects the blood–brain barrier through inhibiting Aβ (25–35)‐induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1‐mediated autophagy in bEnd. 3 cells and APP/PS1 mice. Phytotherapy Research. 2020 13. Zhao Deng,Qi Liu,Miaomiao Wang,Hong-Kui Wei,Jian Peng, et al. GPA Peptide-Induced Nur77 Localization at Mitochondria Inhibits Inflammation and Oxidative Stress through Activating Autophagy in the Intestine. Oxidative Medicine and Cellular Longevity. 2020 14. Lyu L, Hu Y, Yin S, et al. Autophagy inhibition enhances anti‐pituitary adenoma effect of tetrandrine. Phytotherapy Research. 2021, 35(7): 4007-4021. 15. Wu J N, Lin L, Luo S B, et al. SphK1‐driven autophagy potentiates focal adhesion paxillin‐mediated metastasis in colorectal cancer. Cancer Medicine. 2021 16. Chu S, Bi H, Li X, et al. Up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of combination of monoammonium glycyrrhizinate and cysteine hydrochloride induced by CCl4. European Journal of Pharmacology. 2021: 174628. 17. Liu M, Yang Y, Tan B, et al. Gαi and Gβγ subunits have opposing effects on dexmedetomidine-induced sedation. European Journal of Pharmacology. 2018 Jul 15;831:28-37 18. Jing Q, Li G, Chen X, et al. Wnt3a promotes radioresistance via autophagy in squamous cell carcinoma of the head and neck. Journal of Cellular and Molecular Medicine. 2019 May 21 19. Wu A G, Teng J F, Wong V K W, et al. Novel Steroidal Saponin Isolated from Trillium tschonoskii Maxim. Exhibits Anti-Oxidative Effect via Autophagy Induction in cellular and Caenorhabditis elegans models. Phytomedicine. 2019: 153088. 20. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 21. Zhou J, Ji T, He H N, et al. Induction of autophagy promotes porcine parthenogenetic embryo development under low oxygen conditions. Reproduction, Fertility and Development. 2020, 32(7): 657-666 22. Jiang H, Wang C, Zhang A, et al. ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomedicine & Pharmacotherapy. 2022, 153: 113280 23. Yang J, Li J, Guo H, et al. An Experimental Study Reveals the Protective Effect of Autophagy against Realgar-Induced Liver Injury via Suppressing ROS-Mediated NLRP3 Inflammasome Pathway. International Journal of Molecular Sciences. 2022, 23(10): 5697 24. Zhang P, Ni H, Zhang Y, et al. Ivermectin confers its cytotoxic effects by inducing AMPK/mTOR-mediated autophagy and DNA damage. Chemosphere. 2020: 127448. 25. Wang S, Li F, Qiao R, et al. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS nano. 2018 Dec 26;12(12):12380-12392. 26. Wang C, Fu J, Wang M, et al. Bartonella quintana type IV secretion effector BepE ‐induced selective autophagy by conjugation with K63 polyubiquitin chain. Cellular Microbiology. 2019, 21(4): e12984 27. Xia Y, Chen J, Yu Y, et al. Compensatory combination of mTOR and TrxR inhibitors to cause oxidative stress and regression of tumors. Theranostics. 2021, 11(9): 4335. 28. Zhang Y, Ding Y, Li M, et al. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharmaceutica Sinica B. 2021 29. hang C, Liu Z, Zhang Y, et al. Z“Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death & Disease. 2020, 11(3): 1-15. 30. Gao X, Jiang P, Zhang Q, et al. Peglated-H1/pHGFK1 nanoparticles enhance anti-tumor effects of sorafenib by inhibition of drug-induced autophagy and stemness in renal cell carcinoma. Journal of Experimental & Clinical Cancer Researc. 2019, 38(1): 1-15 31. Liu T, Zong S, Luo P, et al. Enhancing autophagy by down-regulating GSK-3β alleviates cisplatin-induced ototoxicity in vivo and in vitro. Toxicology Letters. 2019 32. Zhang H, Cui Z, Cheng D, et al. RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis. Autophagy. 2021 Oct;17(10):3030-3047 33. Xue J, Gruber F, Tschachler E, et al. Crosstalk between oxidative stress, autophagy and apoptosis in Hemoporfin Photodynamic Therapy treated human umbilical vein endothelial cells. Photodiagnosis and Photodynamic Therapy. 2020: 102137. 34. Zhao Deng,Jiangjin Ni,Xiaoyu Wu,Hongkui Wei, et al. GPA peptide inhibits NLRP3 inflammasome activation to ameliorate colitis through AMPK pathway. Aging-us. 2020 35. Wang H, Ye J, Peng Y, et al.CKLF induces microglial activation via triggering defective mitophagy and mitochondrial dysfunction.Autophagy.2023 (just-accepted). 36. Wu X, Yi X, Zhao B, et al.The volume regulated anion channel VRAC regulates NLRP3 inflammasome by modulating itaconate efflux and mitochondria function.Pharmacological Research.2023: 107016. 37. Su C, Cheng C, Rong Z, et al.Repurposing fluphenazine as an autophagy modulator for treating liver cancer.Heliyon.2023 38. Zhang M, Tan H, Gong Y, et al.TRIM26 restricts Epstein–Barr virus infection in nasopharyngeal epithelial cells through K48‐linked ubiquitination of HSP‐90β.The FASEB Journal.2024, 38(1): e23345. 39. Han Y, Wang C, Lu K, et al.Bovine parainfluenza type 3 virus induces incomplete autophagy to promote viral replication by activated beclin1 in vitro.Veterinary Microbiology.2024: 109972. 40. Tang Y, Wei J, Wang X F, et al.Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer’s disease.Neural Regeneration Research.2024 41. Chen J, Liu Y, You Y, et al.Biotin-decorated celastrol-loaded ZIF-8 nanoparticles induce ferroptosis for colorectal cancer therapy.Materials & Design.2024: 112814.
收起
Oxidopamine hydrobromide Ruxolitinib U0126-EtOH 5-Aminolevulinic acid hydrochloride Matrine Oxidopamine hydrochloride Simvastatin GSK3-IN-3

相关化合物库

该产品包含在如下化合物库中:
神经再生化合物库 线粒体靶向库 抗癌天然产物库 抗结直肠癌化合物库 抗乳腺癌化合物库 PI3K/Akt/mTOR 化合物库 铜死亡化合物库 抗胰腺癌化合物库 氧化还原化合物库 抗癌化合物库

剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

3-Methyladenine 5142-23-4 Autophagy Metabolism PI3K/Akt/mTOR signaling Mitophagy PI3K Endogenous Metabolite 3 Methyladenine inhibit 3-MA Mitochondrial Autophagy 3Methyladenine NSC66389 3-甲基腺嘌呤 NSC 66389 NSC-66389 Phosphoinositide 3-kinase Inhibitor inhibitor

 

陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼